Assessing the Teaching and Learning of Science

ACHIEVINGTHEVISION

Desired Student Outcomes

OBJECTIVES

- Provide a insight into assessment considerations from the classroom level to the state overview (and beyond)
- Address policy considerations
 (including educator effectiveness, school ranking, and selection of appropriate assessment instruments) that are impacted by science assessment.
- Highlight strategies that will aid in transition to more appropriate student outcomes in science.

WHERE ARE WE TODAY?

Statewide Proficiency in Science

STATE ASSESSMENTS

- Spring Testing for Grades
 4, 7, and 11
- Testing during the online assessment window
- Highlight strategies that will aid in transition to more appropriate student outcomes in science.

SCIENCE ASSESSMENT TIMELINE

STATE ASSESSMENT OUTCOMES

	State Policy	ISDs, MSCs, & Other Supports	LEAs and Educators	Students and Parents
Immediate outcomes	 Accountability Identify needs for support or policy change 	 Identify needs for professional learning support Programming 	 Educator eval. Instructional transitions Professional learning priorities 	 Identification of target areas for improvement Considerations for learning plans
Annual / Biannual outcomes	 Policy implementation over time Ongoing accountability 	AccountabilityProgrammingConsiderations for partnership	AccountabilityEducator effectivenessProgramming/ policy	 Promote needs of career and college readiness Curriculum decisions
Long Term outcomes	 Policy outcomes MI Merit Curriculum Impact on business / higher education 	 Accountability of support providers Programming Policy efforts 	 Accountability Identify needs for support or policy change 	 Career and college readiness Awareness of scientific literacy considerations

LOCAL AND REGIONAL ASSESSMENTS FOR SCIENCE

2013-2014 Chemistry First Quarter POST TEST » Form A (Master Copy) » Teacher Version

Directions: Please choose the best answer choice for each of the following questions.

 Four students perform flame tests in a laboratory. The table below summarizes their experimental findings. Which student's flame has the highest energy?

Flame Test Results

Student Name	Color Emitted	
Thomas	red	
Anna	green	
Cecilia	yellow	
Devin	blue	

- A. Thomas
- B. Anna
- C. Cecilia
- D. Devin

Answer Choice Rationale

- A. No rationale available
- B. No rationale available
- C. No rationale available
- D. Correct

ItemID gwicks.1001 Correct D Standard(s) SCI.9-12.C2.4a

- 2. The visible emission spectrum of hydrogen shows only four wavelengths. Which of the following best explains this observation?
 - Hydrogen atoms have four orbitals.
 - B. Hydrogen atoms have four electrons.
 - Hydrogen atoms have quantized electron energy levels.
 - Hydrogen atoms have continuous electron energy levels.

Answer Choice Rationale

- A. No rationale available
- B. No rationale available
- C. Correct

D. No rationale available

ItemID gwicks.1006 Correct C Standard(s) SCI.9-12.C2.4c

- A subatomic particle has no charge and a mass of 1 amu, and is located inside the nucleus of an atom.
 What is the identity of this particle? (1 atomic mass unit [amu] is 1/12 the mass of a carbon-12 atom.)
 - A. proton
 - B. neutron
 - C. electron
 - D. ion

Answer Choice Rationale

- A. No rationale available
- B. Correct
- C. No rationale available
- D. No rationale available

ItemID gwicks.1081 Correct B Standard(s) SCI.9-12.C4.8A

- Which element is represented by the electron configuration 1s²2s²2p⁶3s²3p³?
 - carbon
 - B. silicon
 - C. phosphorus
 - D. magnesium

Answer Choice Rationale

- A. No rationale available
- R No rationale available
- C. Correct
- D. No rationale available

ItemID gwicks.1084 Correct C Standard(s) SCI.9-12.C4.8e

An example support system:

- Common pre/post or interim and summative assessments for a region
- Utilizes local / regional data management tools
- This becomes the norm to guide supports around...
 - School improvement
 - Professional learning
 - Supports and resources

LOCAL AND REGIONAL ASSESSMENTS FOR SCIENCE

LOCAL AND REGIONAL ASSESSMENT OUTCOMES

CLASSROOM AND SCHOOL ASSESSMENTS FOR SCIENCE

Rubrics are used to guide educators toward quality assessment of student understanding (from artifacts) and appropriate instructional response

Claim: I claim that when introduced to the xenopus tadpole, these painkillers will most likely make the heart rate go up, or it will stay the same, but rarely go down.

Evidence: Almost all of my trials support my claim; they all either stayed the same, or went up. For the example 24/30 trials either went up or stayed the same, and the average of all the trials is 87.2 in water, and 91.8 when the painkiller is introduced.

Reasoning: I did ten trials for each type of medicine, so my investigation was a fair test, and I looked for all potential sources of error, and if there was one, I restarted, so I am strongly confident in my investigation. I had also known from second hand research that these medicines had no known stimulants or depressants, so it wouldn't make much of a difference.

CLASSROOM AND SCHOOL ASSESSMENTS FOR SCIENCE

Common local assessments

Analysis of student artifacts

Performance assessment

CLASSROOM AND SCHOOL ASSESSMENT OUTCOMES

	Common Assessments	Analysis of Student Artifacts	Performance Assessment
Immediate outcomes	Curriculum coverageAddress general misunderstandings	 Coherence among staff and classes Address individual misunderstandings 	 Probe for depth of understanding Address student misunderstandings
Annual / Biannual outcomes	 Curric. alignment Student learning objectives for teacher evaluation 	 Depth of understanding Student learning objectives for teacher evaluation 	 Instructional change for depth of understanding Student interest / motivation
Long Term outcomes	 Student growth/ improvement over time School improvement 	 Individual student growth Student learning objectives for teacher evaluation 	 Authenticity of work Greater depth of understanding Peer evaluation

ACHIEVINGTHEVISION

Desired Student Outcomes

CONTACTS

Venessa Keesler Deputy Superintendent keeslerv@michigan.gov Andrew Middlestead Director, OSA middlesteada@michigan.gov

Linda Forward
Director, OEII
forwardl@michigan.gov

Stephen Best Assistant Director; OEII bests1@michigan.gov

